Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
International Journal of Stem Cells ; : 125-138, 2019.
Article in English | WPRIM | ID: wpr-764054

ABSTRACT

BACKGROUND AND OBJECTIVES: In regenerative medicine, mesenchymal stem cells derived from adipose tissues (Ad-MSCs) are a very attractive target to treat many diseases. In relation to nephrology, the aim of the current study is to investigate the effects of Ad-MSCs for the amelioration of acute kidney injury and to explore the mechanism of renal parenchymal changes in response to allogeneic transplantation of Ad-MSCs. METHODS AND RESULTS: The nephrotoxicity was induced by cisplatin (CP) in balb/c mice according to RIFLE Class and AKIN Stage 3. PCR, qRT-PCR and fluorescent labeled cells infusion, histopathology, immunohistochemistry, functional analyses were used for genes and proteins expressions data acquisition respectively. We demonstrated that single intravenous infusion of 2.5×107/kg mAd-MSCs in mice pre-injected with CP recruited to the kidney, restored the renal structure, and function, which resulted in progressive survival of mice. The renal tissue morphology was recovered in terms of diminished necrosis or epithelial cells damage, protein casts formation, infiltration of inflammatory cells, tubular dilatation, and restoration of brush border protein; Megalin and decreased Kim-1 expressions in mAd-MSCs transplanted mice. Significant reduction in serum creatinine with slashed urea and urinary protein levels were observed. Anti-BrdU staining displayed enhanced tubular cells proliferation. Predominantly, downgrade expressions of TNF-α and TGF-β1 were observed post seven days in mAd-MSCs transplanted mice. CONCLUSIONS: Ad-MSCs exerts pro-proliferative, anti-inflammatory, and anti-fibrotic effects. Ad-MSCs transplantation without any chemical or genetic manipulation can provide the evidence of therapeutic strategy for the origin of regeneration and overall an improved survival of the system in functionally deprived failed kidneys.


Subject(s)
Animals , Mice , Acute Kidney Injury , Cisplatin , Creatinine , Dilatation , Epithelial Cells , Immunohistochemistry , Infusions, Intravenous , Kidney , Low Density Lipoprotein Receptor-Related Protein-2 , Mesenchymal Stem Cells , Microvilli , Necrosis , Nephrology , Polymerase Chain Reaction , Regeneration , Regenerative Medicine , Transplantation, Homologous , Urea
2.
Salud(i)ciencia (Impresa) ; 22(8): 743-748, dic.-mar. 2018. ilus.
Article in Spanish | BINACIS, LILACS | ID: biblio-1026038

ABSTRACT

El síndrome urémico hemolítico (SUH) está definido por la tríada de anemia hemolítica microangiopática, trombocitopenia e insuficiencia renal aguda. En Argentina constituye la primera causa de insuficiencia renal aguda en pediatría. Aproximadamente, del 2% al 4% de los pacientes mueren durante la fase aguda de la enfermedad, y solo un tercio del 96% restante que sobrevive lo hace con secuelas renales, como la persistencia de la proteinuria. Un individuo adulto sano filtra alrededor de 5000 mg/día de proteínas, si bien la excreción en orina es escasa (150 mg/día). La escasa cantidad de proteínas excretadas indica la presencia de un mecanismo de reabsorción a nivel del túbulo proximal. Por lo tanto, la reabsorción tubular renal desempeña un papel muy importante ya que, ante una función glomerular normal, es el principal mecanismo encargado de evitar la depleción proteica corporal. Desde hace aproximadamente 30 años se sabe que la albúmina es reabsorbida en el túbulo proximal. La reabsorción proteica se produce por un mecanismo de endocitosis mediada por el receptor dependiente de clatrina y por endocitosis de fase líquida. Clásicamente se ha descrito que el mecanismo básico del daño renal en el SUH típico y en el atípico es una microangiopatía trombótica, pero de diferentes causas. Sin embargo, debe tenerse en cuenta que la fisiopatología de esta enfermedad es más compleja de lo que se creía, ya que la alteración tubular que surge va a evolucionar en fallas en el mecanismo de endocitosis de proteínas que se suman a las eliminadas por las alteraciones a nivel de la barrera de filtración glomerular.


Hemolytic uremic syndrome (HUS) is defined by the triad of hemolytic anemia microangiopathic, thrombocytopenia and acute renal failure. In Argentina it constitutes the first cause of acute renal failure in Pediatrics. Approximately 2-4% of patients die during the acute phase of the disease, and only a third of the remaining 96% survive with renal sequelae, such as the persistence of proteinuria. A healthy adult filters around 5000 mg/day of proteins, with an excretion in urine of 150 mg/day. The little quantity of proteins excreted indicates the presence of a reabsorption mechanism at the level of the proximal tubule. Therefore, the tubular reabsorption plays a very important role since it is the main mechanism responsible for preventing the depletion of protein. For approximately 30 years, it has been known that albumin is reabsorbed in the proximal tubule. Protein reabsorption occurs by a clathrin-dependent receptor mediated endocytosis mechanism and by fluid phase endocytosis. The basic mechanism of renal damage in typical and atypical HUS has been described as a thrombotic microangiopathy, but of different causes. However, the pathophysiology of this disease is more complex than what was believed since the emerging tubular alteration will ewvolve into failures of the protein endocytosis mechanism that are added to the alterations at the level of the glomerular filtration barrier.


Subject(s)
Humans , Proteinuria , Low Density Lipoprotein Receptor-Related Protein-2 , Endocytosis , Podocytes , Renal Insufficiency , Hemolytic-Uremic Syndrome
3.
Chinese journal of integrative medicine ; (12): 200-208, 2014.
Article in English | WPRIM | ID: wpr-267162

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of Compound Shenhua Tablet (, SHT) on the sodium-potassium- exchanging adenosinetriphosphatase (Na(+)-K(+)-ATPase) in the renal tubular epithelial cells of rats with acute ischemic reperfusion and to investigate the mechanisms underlying the effects of SHT on renal ischemic reperfusion injury (RIRI).</p><p><b>METHODS</b>Fifty male Wistar rats were randomly divided into the sham surgery group, model group, astragaloside group [150 mg/(kg·d)], SHT low-dose group [1.5 g/(kg·d)] and SHT high-dose group [3.0 g/(kg·d)], with 10 rats in each group. After 1 week of continuous intragastric drug administration, surgery was performed to establish the model. At either 24 or 72 h after the surgery, 5 rats in each group were sacrificed, blood biochemistry, renal pathology, immunoblot and immunohistochemical examinations were performed, and double immunofluorescence staining was observed under a laser confocal microscope.</p><p><b>RESULTS</b>Compared with the sham surgery group, the serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased, Na(+)-K(+)-ATPase protein level was decreased, and kidney injury molecule-1 (KIM-1) protein level was increased in the model group after the surgery (P<0.01 or P<0.05). Compared with the model group, the SCr, BUN, pathological scores, Na(+)-K(+)-ATPase, and the KIM-1 protein level of the three treatment groups were significantly improved at 72 h after the surgery (P<0.05 or P<0.01). And the SCr, BUN of the SHT low- and high-dose groups, and the pathological scores of the SHT high-dose group were significantly lower than those of the astragaloside group (P<0.05). The localizations of Na(+)-K(+)-ATPase and megalin of the model group were disrupted, with the distribution areas overlapping with each other and alternately arranged. The severity of the disruption was slightly milder in three treatment groups compared with that of the model group. The results of immunofluorescence staining showed that the SHT high-dose group had a superior effect as compared with the astragaloside group and the SHT low-dose group.</p><p><b>CONCLUSIONS</b>The SHT effectively alleviated RIRI caused by ischemic reperfusion, promoted the recovery of the polarity of renal tubular epithelial cells, and protected the renal tubules. The therapeutic effects of SHT were superior to those of astragaloside as a single agent.</p>


Subject(s)
Animals , Male , Rats , Acute Disease , Blood Urea Nitrogen , Cell Adhesion Molecules , Metabolism , Chromatography, Liquid , Creatinine , Blood , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Fluorescent Antibody Technique , Immunoblotting , Kidney Function Tests , Kidney Tubules , Pathology , Low Density Lipoprotein Receptor-Related Protein-2 , Metabolism , Rats, Wistar , Reperfusion Injury , Drug Therapy , Pathology , Saponins , Sodium-Potassium-Exchanging ATPase , Metabolism , Staining and Labeling , Tablets
4.
Asian Pacific Journal of Tropical Medicine ; (12): 561-565, 2012.
Article in English | WPRIM | ID: wpr-819632

ABSTRACT

OBJECTIVE@#To investigate the efficiency of β-galactosidase gene transfer into rat kidney with ultrasound-mediated microbubble destruction via different injection routes.@*METHODS@#A total of 25 Wistar rats were randomly divided into 5 groups. Four groups received a mixture of optison microbubbles (0.2 mL) and lacz plasmids (25 μg) injection via renal artery, tail vein, anterior tibial muscle and renal parenchyma, respectively. The control group received a mixture of PBS (xx mL) and lacz plasmids (25 μg) via renal artery. Three days after the gene transfer, ultrasound with fixed frequency and power (1 MHz, xxW) was delivered to the kidneys for 3 min. The efficiency of the gene transfer and expression was evaluated on the basis of β-galactosidase expression. The side effects of this method were evaluated by immunohistological method.@*RESULTS@#β-galactosidase expression could be observed only in tubules but not in glomeruli and interstitial area. The efficiency of renal artery group was higher than that of tail vein, anterior tibial muscle and renal parenchyma group (P<0.05). Immunohistochemical analysis revealed co-expression of β-galactosidase with a roximal tubule marker, megalin, which suggested that ultrasound enhanced gene transfer into the proximal tubular epithelial cells. No β-galactosidase expression was observed in the extrarenal organs. There were no evident pathological and biochemical changes after gene transfer.@*CONCLUSIONS@#Ultrasound-mediated microbubble destruction can transfer gene into kidney via renal artery, tail vein, anterior tibial muscle and renal parenchyma. Compared with renal artery, administrating microbubbles via tail vein and anterior tibial muscle are more convenient and less vulnerarious.


Subject(s)
Animals , Male , Rats , Albumins , Metabolism , Fluorocarbons , Metabolism , Gene Transfer Techniques , Immunohistochemistry , Injections , Kidney , Metabolism , Low Density Lipoprotein Receptor-Related Protein-2 , Metabolism , Microbubbles , Plasmids , Metabolism , Random Allocation , Rats, Wistar , Ultrasonics , beta-Galactosidase , Genetics , Metabolism
5.
Experimental & Molecular Medicine ; : 53-61, 2011.
Article in English | WPRIM | ID: wpr-48414

ABSTRACT

Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3beta. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3beta. In addition, the protective effect of clusterin is independednt on its receptor megalin, because inhibition of megalin has no effect on clusturin-mediated Akt/GSK-3beta phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3beta signaling mediates anti-apoptotic effect of clusterin.


Subject(s)
Animals , Humans , Rats , Apoptosis , Blotting, Western , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line , Chromones/pharmacology , Clusterin/metabolism , Glycogen Synthase Kinase 3/metabolism , Hydrogen Peroxide/pharmacology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Morpholines/pharmacology , Myocytes, Cardiac/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Reactive Oxygen Species/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL